
Introduction

1 What is a fluid?

Fluids are easily recognized because they readily adopt the shape of the recipient or vessel
that contains them. More exactly, a fluid is a material that has the ability to deform even
under zero applied stress. Fluids are made up of atomic particles but this feature can be
safely ignored for many practical purposes by studying fluids from a macroscopic point of
view, regarding the fluid as a continuum formed by an infinite collection of fluid particles
with each particle containing a very large number of fluid atoms or molecules. This is what
is usually done in the study of fluid dynamics.

Newtonian fluids are an important group of fluids characterized for a linear constitutive
relationship between the stress tensor and the rate of strain in the fluid. Many fluids of
engineering importance can be regarded as Newtonian. The focus of CFD here is the study
of flows of incompressible Newtonian fluids.

Density ρ and viscosity µ are the most important macroscopic properties determining the
deformation behavior of Newtonian fluids. Surface tension may also play a role. Thermo-
physical and mass transport properties are important for convective heat and mass transfer.
Furthermore, turbulent kinetic energy and dissipation rate are important quantities involved
in the analysis of turbulent flows.

2 Conservation Principles

Computational Fluid Dynamics (CFD) is the investigation of the detailed flow behavior of
fluids using numerical methods, computational algorithms and powerful computing machines.
The equations solved in CFD are mathematical representation of conservation principles
which have been observed to be fairly universally satisfied.

The first conservation principle is the statement of conservation of mass also called the
continuity equation

∂ρ

∂t
+ ∇ · (ρu) =

∂ρ

∂t
+

∂(ρui)

∂xi

= 0
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where u = ui = (u1, u2, u3) is the velocity vector giving the magnitude and direction of the
fluid velocity at all points inside the fluid at time t. The ui’s are the components of the veloc-
ity vector along the three coordinate directions and the presence of the repeated subscripts
in the last term in multiplicative suggestive form imply summation over the coordinate di-
rections, i.e. for a rectangular Cartesian system of coordinates (x1, x2, x3) = (x, y, z) with
(u1, u2, u3) = (u, v, w)

∂(ρui)

∂xi

=
∂(ρu)

∂x
+

∂(ρv)

∂y
+

∂(ρw)

∂z

A fluid with constant density is called incompressible. In this case, the continuity equation
reduces to

∇ · u =
∂ui

∂xi

= 0

and in rectangular Cartesian coordinates

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0

The second conservation principle is the principle of conservation of momentum. For any
fluid, this is given as

∂ρui

∂t
+

∂ρujui

∂xj

=
∂τij

∂xj

−
∂p

∂xi

+ ρgi

in so called ”conservative” form. A useful but non-conservative form of the momentum
conservation equation is given by

ρ
∂ui

∂t
+ ρ(u · ∇)ui =

∂τij

∂xj

−
∂p

∂xi

+ ρgi

where τij are the components of the viscous stress tensor.
In a Newtonian fluid the viscous stress tensor components are linearly related to the

components of the strain rate tensor Dij = µ( ∂ui

∂xj
+

∂uj

∂xi
) as follows

τij = µDij −
2

3
µδij∇ · u = µ(

∂ui

∂xj

+
∂uj

∂xi

) −
2

3
µδij∇ · u

Moreover p is the pressure (an important quantity to be determined by computation),
g = gi is the gravitational acceleration vector and δij is the Kronecker symbol (= 1 if i = j,
zero otherwise).

Since momentum is a vectorial quantity, the momentum conservation equation is a vector
equation. In a rectangular Cartesian system of coordinates, for any fluid, the components
are:

ρ
∂u

∂t
+ ρu

∂u

∂x
+ ρv

∂u

∂y
+ ρw

∂u

∂z
=

∂τxx

∂x
+

∂τxy

∂y
+

∂τxz

∂z
−

∂p

∂x
+ ρgx
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ρ
∂v

∂t
+ ρu

∂v

∂x
+ ρv

∂v

∂y
+ ρw

∂v

∂z
=

∂τyx

∂x
+

∂τyy

∂y
+

∂τyz

∂z
−

∂p

∂y
+ ρgy

and

ρ
∂w

∂t
+ ρu

∂w

∂x
+ ρv

∂w

∂y
+ ρw

∂w

∂z
=

∂τzx

∂x
+

∂τzy

∂y
+

∂τzz

∂z
−

∂p

∂z
+ ρgz

For incompressible fluids the components of the viscous stress tensor in Cartesian coor-
dinates are given by

τxx = 2µ
∂u

∂x
τyy = 2µ

∂v

∂y
τzz = 2µ

∂w

∂z

τxy = τyx = µ(
∂u

∂y
+

∂v

∂x
)

τyz = τzy = µ(
∂v

∂z
+

∂w

∂y
)

τzx = τxz = µ(
∂w

∂x
+

∂u

∂z
)

Introducing the above into the momentum conservation equations yields the equations
of motion of a Newtonian fluid of constant density and viscosity, namely

ρ
∂u

∂t
+ ρu

∂u

∂x
+ ρv

∂u

∂y
+ ρw

∂u

∂z
= µ(

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
) −

∂p

∂x
+ ρgx

ρ
∂v

∂t
+ ρu

∂v

∂x
+ ρv

∂v

∂y
+ ρw

∂v

∂z
= µ(

∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2
) −

∂p

∂y
+ ρgy

ρ
∂w

∂t
+ ρu

∂w

∂x
+ ρv

∂w

∂y
+ ρw

∂w

∂z
= µ(

∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2
) −

∂p

∂z
+ ρgz

Using vector notation, the above equations simplify to

ρ
∂ui

∂t
+ ρ(u · ∇)ui = µ∇2ui −∇p + ρg

In the above equations, the first term on the left hand side represents the time rate of
change of momentum along a particular coordinate direction (x, yorz) at a fixed point in the
fluid. The next three terms on the left hand side are rate of change of momentum in the fluid,
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in the same coordinate direction, due to the three vector components of the fluid motion (i.e
the rate of change of momentum induced by the convective motion of the fluid). The four
terms on the left hand side represent the inertial effect of fluid motion. The first three terms
on the right hand side are the time rate change of momentum in the fluid associated with
the internal viscous forces in the fluid. The fourth term on the right hand side is the rate of
change of momentum due to spatial pressure variations in the fluid and the last term is the
rate of change of momentum due to the action of gravity. Note that the units of all terms in
the equations are momentum per unit time per unit volume, which are equivalent to force
per unit volume. Therefore the equations can be regarded as representing the conservation
of the components of momentum or the balance of force components at all points in the
fluid.

Additional conservation equations must be invoked when in addition to fluid flow, trans-
port of energy, mass or turbulent kinetic energy are involved. The generic conservation
principle for a transported scalar quantity φ is

∂(ρφ)

∂t
+

∂(ρujφ)

∂xj

=
∂

∂xj

(Γ
∂φ

∂xj

) + qφ

in conservative form, or

ρ
∂φ

∂t
+ ρuj

∂φ

∂xj

=
∂

∂xj

(Γ
∂φ

∂xj

) + qφ

in non-conservative form, where Γ and qφ are, respectively, the (molecular) diffusivity and the
internal rate of generation (source) or consumption (sink) of φ in the fluid. This important
equation is called the generalized convection-diffusion equation because of the presence of
the convective term on the left hand side and the diffusive term on the right hand side.

Note that the mass conservation and momentum conservation equations above are par-
ticular cases of the generic conservation equation above. Specifically, the mass conservation
equation is obtained by making φ = 1 and Γ = qφ = 0, and the momentum conservation
equation is obtained by making φ = ui, Γ = µ and qφ = −

∂p
∂xi

+ ρgi.
Moreover, the generic conservation equation becomes the convective-diffusive heat trans-

fer equation governing the transport of thermal energy in the flow when φ = H, the enthalpy
of the fluid and Γ = k, its thermal conductivity. And it becomes the convective-diffusive
mass transfer equation governing the transport of a dissolved substance in the fluid when
φ = C , the concentration of dissolved substance in the fluid and Γ = ρD, where D is the
mass diffusivity of the dissolved substance.

3 Reduced Models

From the above, various useful simplifications of the momentum conservation equation can
be obtained that are appropriate for the analysis of important special cases.
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If the flow of an incompressible Newtonian fluid does not change with time (steady flow),
the momentum equation becomes

ρ(u · ∇)ui = µ∇2ui −∇p + ρg

For situations where the effect of viscosity can be neglected (inviscid flows or Euler flows),
the momentum equation is

ρ
∂ui

∂t
+ ρ(u · ∇)ui = −∇p + ρg

and if the flow does not change with time (steady inviscid flow) this reduces to

ρ(u · ∇)ui = −∇p + ρg

If for an inviscid steady flow the velocity field is irrotational (i.e. ∇×u = 0), the velocity
is given by the gradient of a potential Φ, i.e. u = −∇Φ and the flow can be simply modeled
by the potential equation

∇
2Φ = 0

such flows are called potential flows.
If viscosity is important but inertia effects are negligible (creeping flows), the momentum

equation becomes

ρ
∂ui

∂t
= ∇ · (µ∇ui) −∇p + ρg

For steady state creeping flows with constant viscosity and when the effect of gravity is
negligible, the momentum equation reduces to (lubrication flows)

µ∇2ui = ∇p

When the flow is mainly unidirectional and the flow geometry changes gradually, one
obtains the boundary layer approximation. In non-isothermal flows, if the density is not
constant but changes little with temperature, one can regard density as constant in all terms
of the momentum equation except the gravitational term. This is called the Boussinesq
approximation.

The various reduced models are important in their own right and are the focus of intensive
study. In CFD one generally aims to develop the ability to solve three-dimensional problems
involving of the flow of incompressible Newtonian fluids.
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4 Initial and Boundary Conditions

Specific problems in CFD involve the solution of the momentum conservation equations
subject to the constraint imposed by the principle of mass conservation (equation of conti-
nuity)as well as the associated initial and boundary conditions prevailing in any particular
problem.

An initial condition is the specification of the value of the velocity components in the
entire fluid domain at time t = 0, i.e.

u(x, 0) = u0

Boundary conditions constitute statements about the particular values acquired by the
velocity components, their derivatives or combinations of these at the bounding surfaces
of the fluid. Commonly used boundary conditions are the no-slip condition at fluid-solid
interfaces, i.e.

u = uwall

and the no-shear condition at liquid-gas interfaces

Dijtinj = 0

where ti = t and nj = n are, respectively, the tangent and normal vectors to the interface.
Finally, at fluid-fluid interfaces where the effects of shear and surface tension cannot be

neglected, both tangential and normal forces must be in equilibrium at the interface, e.g. for
Newtonian incompressible fluids labelled ’ and ”

µ′D′

ijtinj = µ”Dij”tinj

and

p” − µ”Dij”ninj = p′ − µ′D′

ijninj + γ(
1

R1

+
1

R2

)

where γ is the surface tension and R1, R2 are the principal radii of curvature of the interface.
Two important additional types of boundary conditions are associated with fluid domains

containing inlets and outlets. At an inlet, one usually assigns (known) values to the velocity
vector, i.e.

u = uinlet

At an outlet, a reference value of pressure (usually zero) is specified, i.e.

p = 0
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5 Obtaining Solutions ot Flow Problems

Exact solutions of the equations governing the flow of incompressible Newtonian fluids exist
only for a very small number of special, simplified situations. Therefore the calculation of
approximate, numerical solutions is necessary, hence CFD.

There are several methods of computing approximate solutions. The ones most commonly
used include, finite differences, finite volumes and finite elements. Alternative approaches
include various types of particle methods, lattice Boltzmann methods, and cellular automata
among others.
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