
Finite Difference Method

1 Introduction

The finite difference method is the oldest approach to the numerical solution of the equations
of fluid dynamics. The fundamental idea is straightforward and implementation is relatively
simple. Approximations of various levels of accuracy can be readily computed by the use
of different finite difference formula. Consistency, stability and error analysis can be carried
out.

The momentum conservation and continuity equations involve not only the various com-
ponents of velocity but also first and second order partial derivatives of these components.
The finite difference method consists in replacing the derivatives in the governing equations
by finite difference approximations. While the original equations apply to the infinite of
points in the fluid constituting the flow domain, the corresponding finite difference ana-
logues apply only at finite collection of discrete points in a mesh of nodes constructed for
the purpose. As a result, the original initial-boundary value problem for a set of non-linear
partial differential equations is transformed into a set of coupled, simultaneous, non-linear
algebraic equations. Since the resulting set of equations is non-linear, iterative solutions
methods must be used to solve them.

2 Finite Difference Approximations

The finite difference method is inspired in elementary calculus. Recall that the derivative of
a function f(x) with respect to the argument df

dx
is defined as

df

dx
= lim

∆x→0

∆f

∆x
= lim

∆x→0

f(x + ∆x)− f(x)

(x + ∆x)− x

where the equality between df/dx and ∆f/∆x is exact only in the limiting sense.
The error or difference between the values of df/dx and ∆f/∆x can be estimated from

the Taylor series expansion of the function f(x) = f(xi) in the vicinity of a given point xi,
which is given by

f(x + ∆x) = f(x) + (∆x)
df

dx
|i +

(∆x)2

2!

d2f

dx2
|i + ... +

(∆x)n

n!

dnf

dxn
|i
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Note that the formula predicts the value of the function at the neighboring location using
only knowledge of the value of the function and its derivatives at x = xi.

Upon rearrangement, the above yields

f(x + ∆x)− f(x)

∆x
=

df

dx
|i +

∆x

2!

d2f

dx2
|i + ... +

∆xn−1

n!

dnf

dxn
|i

showing that, when ∆x is small, the leading term in the approximation error is of the order
of ∆x and that the error tends to zero as ∆x gets smaller. An identical result is obtained
when considering partial derivatives.

Consider now a scalar function of position φ(x, y, z) in a three dimensional rectangular
Cartesian system of coordinates and focus on the variations of φ with distance along the x−
coordinate direction at constant values of y and z. Let xi be an given point along the x−axis
and xi−1 = xi − ∆x and xi+1 = xi + ∆x two neighboring points. The following truncated
approximations to the first partial derivative at x = xi are readily obtained from the Taylor
series by discarding all the error terms starting with the leading term:

∂φ

∂x
|i ≈

φ(xi+1) − φ(xi)

xi+1 − xi

=
φi+1 − φi

xi+1 − xi

called the forward difference (FD) formula,

∂φ

∂x
|i ≈

φ(xi) − φ(xi−1)

xi − xi−1

=
φi − φi−1

xi − xi−1

called the backward difference (BD) formula, and

∂φ

∂x
|i ≈

φ(xi+1) − φ(xi−1)

xi+1 − xi−1

=
φi+1 − φi−1

xi+1 − xi−1

the central difference (CD) formula. One can readily show that the leading error term in the
first two formulae is proportional to ∆x while in the third formula is proportional to (∆x)2.

Second order accurate approximations to the first derivative are useful in deriving finite
difference formulae for higher order derivatives. The following second order accurate cen-
tral difference formulae constitute approximations for the first derivatives at the mid-node
locations xi+ 1

2

= 1

2
(xi+1 + xi) and xi− 1

2

= 1

2
(xi1 + xi−1),

∂φ

∂x
|i+ 1

2

≈
φi+1 − φi

xi+1 − xi

and

∂φ

∂x
|i− 1

2
≈

φi − φi−1

xi − xi−1
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Higher order accuracy formulae are readily obtained by considering additional neighbor-
ing points. For instance, fitting a cubic polynomial to the four uniformly spaced neighboring
points (xi−2, xi−1, xi, xi+1) yields the third order accurate approximation

∂φ

∂x
|i ≈

2φi+1 + 3φi − 6φi−1 + φi−2

6∆x

and fitting the five uniformly spaced neighboring points (xi−2, xi−1, xi, xi+1, xi+2) with a
fourth order polynomial yields the fourth order accurate approximation

∂φ

∂x
|i ≈

−φi+2 + 9φi+1 − 8φi−1 + φi−2

12∆x

Higher accuracy, compact approximations can be obtained using Pade’ schemes which
involve values of the derivatives at neighboring points. For example, a Pade’-6 (sixth order
accurate) scheme is given by

1

3

∂φ

∂x
|i+1 +

∂φ

∂x
|i +

1

3

∂φ

∂x
|i−1 =

14

9

φi+1 − φi−1

2∆x
+

1

9

φi+2 − φi−2

4∆x

which constitutes a tridiagonal system of equations for the values of the derivatives at the
three locations (xi−1, xi, xi+1). Many other possible finite difference formulae exist.

Non-uniformly spaced points are a must in CFD since the characteristics of the flow vary
from point to point. In some areas the velocities may change rapidly with distance while in
others that will not be the case. One is must then use many mesh points where the flow
changes rapidly with position and not so many where the flow changes little.

The use of mesh expansion ratios is common practice in CFD. Consider three neighboring
points in a non-uniform grid of points (xi−1, xi, xi+1). The corresponding mesh spacings are
∆xi = xi − xi − 1 and ∆xi+1 = xi+1 − xi. The mesh expansion ratio r is defined as

r =
∆xi+1

∆xi

One can show that the effect of mesh refinement on the truncation error when using non-
uniform grid is the same as for a uniform grid, but that for a fixed, given number of grid
points, the errors are almost always smaller when using non-uniform spacing.

Finite difference approximations for second derivatives can be readily obtained using the
above. For instance

∂2φ

∂x2
|i ≈

∂φ

∂x
|i+ 1

2

− ∂φ

∂x
|i− 1

2

1

2
(xi+1 − xi−1)

when the mesh spacing is uniform, this reduces to the well know expression

∂2φ

∂x2
|i ≈

φi+1 − 2φi + φi−1

(∆x)2
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Higher order accuracy formulae are readily obtained. For instance fitting the five uni-
formly spaced neighboring points (xi−2, xi−1, xi, xi+1, xi+2) with a fourth order polynomial
yields the fourth order accurate approximation

∂2φ

∂x2
|i ≈

−φi−1 + 16φi−1 − 30φi + 16φi+1 − φi2

12(∆x)2

3 Finite Difference Approximation of the Diffusion Term

To illustrate the use of the above, consider the diffusion term in the conservation of mo-
mentum equations ∂

∂x
(Γ∂φ

∂x
). A very frequently used, second order accurate finite difference

approximation of this term at location xi is given by

∂

∂x
(Γ

∂φ

∂x
)|i ≈

(Γ∂φ
∂x

)|i+ 1

2

− (Γ∂φ
∂x

)|i− 1

2

1

2
(xi+1 − xi−1)

≈
Γi+ 1

2
(φi+1−φi

xi+1−xi

) − Γi− 1

2
(φi−φi−1

xi−xi−1
)

1

2
(xi+1 − xi−1)

=

=
Γi+ 1

2
(φi+1−φi

∆x
) − Γi− 1

2
(φi−φi−1

∆x
)

∆x
= Γ(

φi−1 − 2φi + φi+1

(∆x)2
)

4 Boundary Conditions

For fluids that are entirely confined by solid walls the no slip condition is applied at all
boundaries. At an inlet, the input velocity must be specified while at an outlet one uses an
outflow condition (du/dn = 0) or sets a reference value for the pressure (say p = 0).

For the scalar variable φ, its actual values may be specified (BC of Dirichlet type or first
kind) or the value of its normal derivative may be specified (BC of Neumann type or 2nd
kind) or a linear combination of the above may be specified (BC of Robin type or 3rd kind).

5 Solution of the Algebraic Equations

For purposes of illustrating the essence of the solution techniques employed when working
with finite difference methods, consider the boundary value problem consisting of finding an
approximation to the function φ(x) for x ∈ [0, L] satisfying

−
d2φ

dx2
= f(x)

where f(x) is a given function and subject to

φ(0) = 0

φ(1) = 0
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Introducing a mesh of uniformly spaced nodes i = 1, 2, ..., N , with spacing ∆x the finite
difference analogue of the above problem for node i is readily obtained as

−φi−1 + 2φi − φi+1

(∆x)2
= f(xi)

or rearranging

−φi−1 + 2φi − φi+1 = f(xi(∆x)2

The complete set of equations for all nodes in the mesh constitutes a system of coupled,
simultaneous, linear algebraic equations. Note that the algebraic equation system obtained
has a very peculiar form in which every equation involves only three neighboring nodes.
Algebraic systems of equations with this type of structure are called Tri-Diagonal since
when the equations are written in matrix form, non-zero coefficients appear only along the
main diagonal and the first super and sub diagonal rows, with the terms appearing along
the diagonal being always numerically larger that those elsewhere.

A very efficient direct (i.e. non-iterative) method exist for their solution (e.g. LU de-
composition; Tri-Diagonal Matrix Algorithm (TDMA). In this method,the original matrix
is first manipulated row by row in order to obtain an upper triangular matrix (i.e. non-zero
coefficients only at and above the diagonal); this is the triangularization step. The second
step is simply one of back substitution starting with the last equation in the set and con-
tinuing until the first one is reached. Even though, multidimensionality and the non-linear
terms in the flow equations make the application of direct methods impractical in general,
the TDMA procedure is of great importance in CFD where it is used as linchpin in iterative
solution procedures.

In an iterative method one assumes an initial guess for the solution φold
i and computes an

improved guess φnew
i using the discretization formula. The process is then repeated until the

computed values at all grid points change little with every subsequent iteration (convergence
of the iterations). Typically, at every iteration once searches the entire mesh for the largest
relative difference between iterates, i.e.

ǫMAX = MAX(ǫi,j) = MAX(
|φnew

i − φold
i |

|φold
ref |

)

where φold
ref is a suitably selected reference value. Iterations stop once a predetermined level

of tolerance is reached, i.e.

ǫMAX ≤ ǫTOL

The iteration procedure is best illustrated by an example. Consider again the problem
above. Using the finite difference method, the following discrete analogue was obtained

−φi−1 + 2φi − φi+1 = f(xi(∆x)2
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From this, different iterations schemes can be readily constructed.
In the Jacobi iteration procedure, the iteration formula is simply obtained by solving the

above for φi

φnew
i =

1

2
[φold

i−1 + φold
i+1 + f(xi)(∆x)2]

were the superscript new is used to denote the improved guess. An improved guess for all
nodes in the FD mesh can be obtained by visiting the nodes sequentially and calculating the
new guess with the formula above.

In the Gauss-Seidel iteration procedure one takes advantage of the fact that nodes are
always visited in sequence (say, from left to right) and uses the latest values stored in the
memory of the computer, as soon as these become available. The iteration formula in this
case is

φnew
i =

1

2
[φnew

i−1 + φold
i+1 + f(xi)(∆x)2]

In the Successive Over-relaxation (SOR) iteration procedure one improves on the G-S
procedure by relaxing the value of the iterated variable. The iteration formula in this case is

φnew
i = φold

i +
ω

2
[φnew

i+1 + φold
i+1 − 2φold

i + f(xi)(∆x)2]

where ω (1 < ω < 2) is the relaxation factor. Note that the SOR formula reduces to the
Gauss-Seidel scheme when ω = 1.

6 The Convection-Diffusion Equation and Upwinding

Consider the following one-dimensional convection-diffusion equation for the transported
quantity φ(x)

ρu
dφ

dx
= Γ

d2φ

dx2

for x ∈ [0, L] subject to suitable boundary conditions such as

φ(0) = 1

φ(L) = 1

where ρ is the density of the fluid, u > 0 is the velocity and Γ the diffusivity of φ in the
fluid, and all are assumed constant.

Using the method of finite differences and central differencing on an uniform mesh (spac-
ing ∆x), consisting of N nodes located at x1, x2, ..., xi−1, xi, xi+1, ..., xN yields the following
discrete analogue

ρu(
φi+1 − φi−1

2∆x
) = Γ(

φi−1 − 2φi + φi+1

(∆x)2
)
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This is again a tridiagonal system of linear algebraic equations. The effect of convection
appears as an additional term in the equations for the coefficients of φi−1 and φi+1 and the
equations can be solved as before, using the TDMA method or some iterative procedure.

The above scheme works fine as long as the Peclet number of the system, defined as

Pe =
ρuL

Γ

and representing the ratio of convective to diffusive transports, is small (say < 1).
When the value of Pe increases, φ varies rapidly in the vicinity of the downstream

boundary and the scheme above can result in meaningless oscillations in the computed values
of φ. A simple remedy for this problem is the technique called upwinding. This consists
in taking into account the direction of the flow when discretizing the convective term. One
should expect that, at large flow velocities, the value of φ at any given location should be
influenced most by the value of φ at the nodal location immmediately upstream of the flow,
i.e. for the above case with u > 0,

ρu(
φi − φi−1

∆x
) = Γ(

φi−1 − 2φi + φi+1

(∆x)2
)

If instead, u < 0, the corresponding formula would be

ρu(
φi+1 − φi

∆x
) = Γ(

φi−1 − 2φi + φi+1

(∆x)2
)

Upwinding prevents the development of oscillations. However, since the finite difference is
one sided, it is only first order accurate and it has the effect of introducing a non-physical
diffusive effect in the solution called false diffusion. Discretization schemes of higher order
of accuracy have been developed based on the notion of upwinding (e.g. the exponential
scheme).
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